Seminar on A1-topology, motives and K-theory

The Dual Motivic Witt Cohomology Steenrod Algebra

by Viktor Burghardt (Northwestern University)

Europe/Moscow
818-1526-4739 (Zoom)

818-1526-4739

Zoom

Description

Over a field k, the zeroth homotopy group of the motivic sphere spectrum is given by the Grothendieck-Witt ring of symmetric bilinear forms GW(k). The Grothendieck-Witt ring GW(k) modulo the hyperbolic plane is isomorphic to the Witt ring of symmetric bilinear forms W(k) which further surjectively maps to Z/2. We may take motivic Eilenberg-Maclane spectra of Z/2, W(k) and GW(k). Voevodsky has computed the motivic Steenrod algebra of HZ/2 and solved the Bloch-Kato conjecture with its help. We move one step up in the above picture; we study the motivic Eilenberg-Maclane spectrum corresponding to the Witt ring and compute its stable cooperations.