25-30 November 2024
Saint-Petersburg University
Europe/Moscow timezone

Constructive recovery of values of an algebraic function via Hermite--Padé polynomials

25 Nov 2024, 15:20
35m
Saint-Petersburg University

Saint-Petersburg University

Department of Mathematics and Computer Sciences, Saint-Petersburg University, Saint Petersburg, 14 line V.O., 29B Yandex maps link: https://yandex.ru/maps/-/CDw2mFl9 Google maps link: https://maps.app.goo.gl/L1Nrzf81wahREKop6 ZOOM streaming at: https://us02web.zoom.us/j/675315555

Speaker

Aleksandr Komlov (Steklov Mathematical Institute of RAS, Moscow)

Description

Let $f$ be an algebraic function of degree $m+1$ and $f_\infty$ be its holomorphic germ at the point $\infty$. Hermite--Padé polynomials of type I for the tuple $[1,f_\infty,f_\infty^2, \dots,f_\infty^m]$ of order $n$ at $\infty$ are $m+1$ polynomials $Q_{n,j}$, $j=0,\dots,m$, such that $\deg Q_{n,j}\le n$ and
$$ Q_{n,0}(z)+Q_{n,1}(z)f_\infty(z)+Q_{n,2}(z)f_\infty^2(z)+\dots+Q_{n,m}(z)f_\infty^m(z)=O(z^{-m(n+1)}) $$ as $z\to\infty$. In 1984 J. Nuttall (not in general case and not with full proofs) and in 2017 E. Chirka, R. Palvelev, S. Suetin and A. Komlov (in general case and with full proofs) showed that $Q_{n,m-1}/Q_{n,m}$ asymptotically recover the sum of the values of $f$ on first $m$ sheets of Nuttall partition of the Riemann surface of $f$. So, this ratio recovers sum of $m$ values of $(m+1)$-valued function $f$. In 2021 the polynomial Hermite--Padé $m$-system was introduced. With the help of this system we show that for generic function $f$ the ratio of some minors of size $m+1-k$ of the $(m+1)\times(m+1)$ matrix consisting of Hermite--Padé polynomials of order $n, n-1,\dots, n-m$ asymptotically recover the sum of the values of $f$ on first $k$ sheets of Nuttall partition of the Riemann surface of $f$ for each $k=1,\dots,m$. Hence we constructivelly recover $m$ values of $(m+1)$-valued algebraic function $f$.

Primary author

Aleksandr Komlov (Steklov Mathematical Institute of RAS, Moscow)

Presentation Materials

There are no materials yet.