Б.Б. Шойхет "Алгебра и теория гомотопий"

Parent category
There are no upcoming events for this category

Б.Б. Шойхет

Алгебра и теория гомотопий



Предположительно (не окончательно) начало в субботу 14 сентября в 14:00 в 311 ауд ПОМИ


Мы обсудим различные сюжеты связанные с алгебраическим описанием гомотопического типа $n$-кратных пространств петель.
Мы начнем с изложения работы Мэя [2] в которой дается характеризация $n$-кратных пространств петель в терминах действия операды маленьких дисков $E_n$. Более того, строится явное распетливание, то есть пространство $Y$ такое что данное пространство $X$ с действием операды $E_n$ и некоторым условием на $\pi_0$ слабо гомотопически эквилентно $n$-кратному пространству петель $\Omega^n(Y)$, с помощью монадной бар-конструкции.

Далее планируется обсудить подход Сигала к той же задаче через $\Gamma$-пространства, групповое пополнение, и доказательство Сигала теоремы Барратта-Придди-Квиллена. А также категоризацию распетливания Сигала по Томасону.

Пререквизиты: Курс предполагает знание алгебры и топологии 1-2 курсов. Некоторое знакомство с элементарной теорией категорий будет полезно. Предварительных знаний теории операд не предполагается.

\vspace{ 2mm}

Литература:

[1] J.-L.Loday, B.Vallette, Algebraic Operads, Springer
[2] P.May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Springer 1972
[3] Дж.Адамс, Бесконечнократные пространства петель
[4] G.Segal, Categories and cohomology theories, Topology 13 (1974)

September 2024