Generalizations of Rellich and Birman integral inequalities

4 Jul 2023, 15:00
40m

Speaker

Farit Avkhadiev (Kazan Federal University)

Description

We consider integral inequalities for functions $f\in C_0^{\infty}(\Omega)$ on domains $\Omega$ of the Euclidean space $\mathbb{R}^n$, $n\in \mathbb{N}$.
There are several inequalities connected with two following basic results. Namely, in 1954 F. Rellich proved that
$$ \int_{\mathbb{R}^n} |\Delta f|^2 \,dx\geq \frac{n^2(n-4)^2}{16}\int_{\mathbb{R}^n}\frac{|f|^2} {|x|^{4}} dx, \quad \quad \forall f\in C_0^\infty(\mathbb{R}^n\setminus \{0\}) \,\, (n\geq 3), $$ where $\Delta f$ is the Laplacian of the function $f:\mathbb{R}^n\setminus {0} \to\mathrm{C}$. In 1961 M. Sh. Birman proved that $$ \int_0^{\infty}|f^{(k)}(t)|^2 dt \geq \left( \frac{(2k-1)!!}{2^k} \right)^2\int_0^{\infty}\frac{|f(t)|^2}{t^{2k}} dt, \quad \forall f \in C_0^\infty(0, \infty)\,\, (k\in \mathbb{N}). $$ We will describe direct generalizations of the Rellich and Birman inequalities. In addition, using the polyharmonic operator defined by $$ \Delta^{k/2}f(x):= \begin {cases} \Delta^j f(x),&\text{if $k=2j$},\\ \nabla \Delta^{j-1} f(x),&\text{if $k=2j-1$}, \end {cases} $$ where $j\in \mathbb{N}$, $k\in \mathbb{N}$, $f\in C_0^{\infty}(\Omega)$, $\Omega\subset\mathbb{R}^n$, we describe results about the inequality $$ \int_{\Omega} |\Delta^{k/2} f(x)|^2 dx\geq A_k(\Omega)\int_{\Omega}\frac{|f(x)|^2}{{\rm dist}^{2k}(x, \partial\Omega)}dx, \quad \forall f\in C_0^\infty(\Omega). $$

Presentation Materials

There are no materials yet.