Speaker
Description
We plan to discuss some recent results (see [1-3]) related to Calderón-Mityagin and Arazy-Cwikel interpolation properties in the class of quasi-Banach spaces. As an example, we will consider the classical family of couples $(\ell^{p},\ell^{q})$, $0 \le p < q \le \infty$, focusing on an identification of interpolation orbits of elements with respect to such a couple for any $p$ and $q$, $0 \le p [1] S.V. Astashkin, M. Cwikel and P.G. Nilsson, Arazy-Cwikel and Calderón-Mityagin type properties of the couples $(\ell^p, \ell^q)$, $0\le p < q \le \infty$, Annali di Matematica Pura ed Applicata (2022). [2] S.V. Astashkin and P.G. Nilsson, Arazy-Cwikel property for quasi-Banach couples, Positivity 26 (2022), no.4, paper no. 72. [3] S.V. Astashkin and P.G. Nilsson, A description of interpolation spaces for quasi-Banach couples by real $K$-method, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2023), paper no. 35.