Speaker
Konstantin Dyakonov
(ICREA and Universitat de Barcelona)
Description
Let $\Lambda$ be a subset of $\mathbb Z_+:=\{0,1,2,\dots\}$, and let $H^\infty(\Lambda)$ denote the space of bounded analytic functions $f$ on the disk whose coefficients $\hat f(k)$ vanish for $k\notin\Lambda$. Assuming that either $\Lambda$ or $\mathbb Z_+\setminus\Lambda$ is finite, we determine the extreme points of the unit ball in $H^\infty(\Lambda)$.
Primary author
Konstantin Dyakonov
(ICREA and Universitat de Barcelona)